

# SpecNN: A Hardware Accelerator for k-Nearest Neighbors

Davis Sheppard, Yan Cheng Poon, Tanay Sharma, Aarti Phatke, Yunqi Zhang, Shreya Nadiger

# **Agenda**

- Introduction
- Motivation & Problem Statement
- Bit-serial Computation Introduction
- Architecture Overview
- Implementation
- Optimizations
- Evaluation & Datasets
- Conclusion
- Future Work

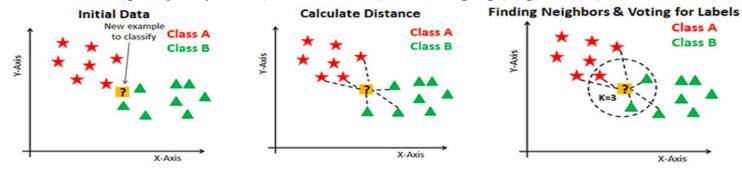


### Introduction

K Nearest Neighbors (KNN) is a simple and widely used algorithm for classification and regression.

#### **How KNN Works**

- Receive a query point
- Compute distances to all dataset points
- Select the K nearest neighbors
- Predict using majority vote (classification) or averaging (regression)





Class A

Class B

X-Axis

### **Motivation**

High Demand

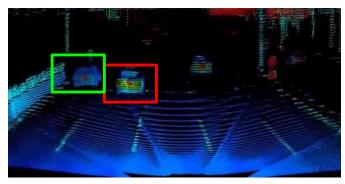
Autonomous driving & robotics (LiDAR point-cloud matching)
Computer vision (feature matching, image retrieval)
Recommendation systems
Anomaly detection.

- No training, doesn't need ordered data
- KNN consumes up to 80% of total pipeline runtime.



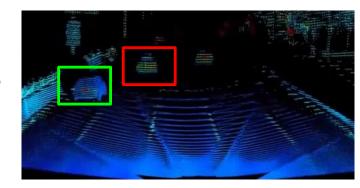
### **Motivation**

- Application example in autonomous driving:
  - 1. Continuously receive multiple frames of point clouds from the LiDAR
  - 2. Extract features in the frames using other algorithm (e.g. Convolutional Neural Network)
  - 3. Utilize kNN search to establish point correspondences between consecutive frames to detect vehicle motion



kNN finds correspondences between consecutive point cloud frames using distance, enabling algorithms to estimate motion.







# **Problem Statement**

- Standard processors calculate the full Euclidean distance (32/64-bit) for every point.
- Most points are far away. Calculating full precision for "rejects" wastes energy and cycles.

**Goal**: Design a domain-specific accelerator for KNN that minimizes unnecessary computation and memory bandwidth/transaction.



# Prev. Work: BitNN Bit-serial Distance Unit (BDU) [1]

#### Partial Squared Distance Formula:

$$dist_{m}^{2}(q,r) = \underbrace{dist_{m-1}^{2}(q,r)}_{2} << 2 + \sum_{d=1}^{3} (q_{d,B-m} - r_{d,B-m})^{2} + \sum_{d=1}^{3} ((q_{d,B-m} - r_{d,B-m}) \times f_{d,m-1}(q,r)) << 2$$

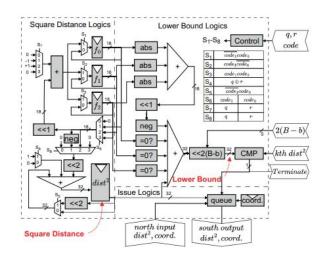
$$f_{d,m}(q,r) = f_{d,m-1}(q,r) << 1 + (q_{d,B-m} - r_{d,B-m})$$

#### Lower Bound Formula:

$$g_m^2(q,r) = \left(dist_m^2(q,r) - \sum_{d=1}^3 h_{d,m}(q,r)\right) \times 2^{2(B-m)}$$

$$h_{d,m}(q,r) = \begin{cases} 2 \times |f_{d,m}(q,r)| - 1, & f_{d,m}(q,r) \neq 0 \\ 0, & f_{d,m}(q,r) = 0 \end{cases}$$

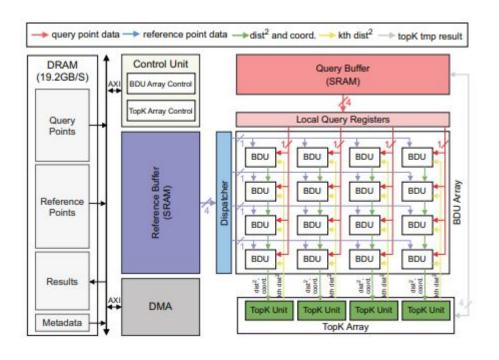
- Bit-by-bit computation of distance from MSB to LSB across all dimensions
- Terminate if: Lower Bound > Threshold
- **Done if:** Not Terminated by the LSB of the last dim



BDU Verilog Implemented by Us: <a href="https://github.com/EECS-573-KNN-Accelerator/eecs573project/blob/main/verilog/BDU.sv">https://github.com/EECS-573-KNN-Accelerator/eecs573project/blob/main/verilog/BDU.sv</a> Run the BDU test here: <a href="https://github.com/EECS-573-KNN-Accelerator/eecs573project/blob/main/test/BDU">https://github.com/EECS-573-KNN-Accelerator/eecs573project/blob/main/test/BDU</a> test.sv



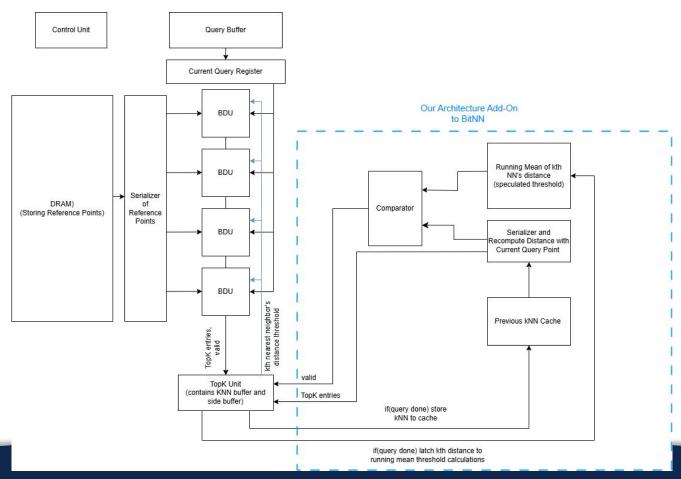
# Prev. Work: BitNN Architecture



- Parallelizing reference points over an array of BDUs (rows)
- Parallelizing query point searches over array of query registers (columns)
- Storing not-terminated points to TopK unit that produces threshold based on the kth distance to Q



# **Architecture Overview**





# **Optimization 1: PrevKNN Cache**

- Hypothesis: Spatial Locality of Query Points Exists (Neighbouring Query Points will have spatial locality)
  - Autonomous Driving (KITTI Dataset) [2]
    - Average distance between consecutive frame points: < 2 meters (vehicle moves ~30 km/h = 8.3 m/s)
  - ICP Algorithm in Simultaneous Localization and Mapping (SLAM) [3]
    - In ICP registration, 85-90% of query points have their nearest neighbors within 0.5m in consecutive frames
- Idea: Cache kNN of previous query point, and at initialization, compute distance between all previous kNN and the current query point, and use the new kth distance as a beginning threshold
- Effect: **Reduce BDU Termination Warmup Latency** (warms the termination threshold faster, resulting in more effective and faster terminations)
  - Query points that are near to their previous query point will initialize their Top K unit with near-accurate candidates, resulting in faster terminations when looping through reference points



# **Optimization 2: Running Mean Threshold**

- Hypothesis: Sparsity of Reference Point Clouds Remain Largely Consistent (kth NN distance or final threshold will be within a range across all query points)
  - While different applications have vastly different sparsity, sparsity within a reference point set presents a consistent pattern due to temporal continuity and physical constraints [4]
- Idea: Latch the final kth distance for every query point for calculation of running mean across a window of query points, use the running mean (scaled by a multiplier) as the beginning threshold
- Positive Effect: Reduce BDU Termination Warmup Latency
  - Reference point clouds with consistent sparsity will have a near-accurate termination threshold, resulting in faster terminations when looping through reference points
- Negative Effect: Valid non-terminated points might be less than k
  - Overly aggressive/tight running mean threshold might result in overly aggressive termination, resulting in less than k points collected.



# **Combined Algorithm Design**

- At initialization, we run through each previous kNN points and compute distance to the current query point
- The computed distance will be compared against the current running mean threshold (scaled by multiplier)
  - If distance < threshold: point is added to current query's TopK as valid entry</li>
  - Else: point is added to current query's TopK as **invalid** entry
- All reference points are shifted into TopK regardless of termination or not
  - Terminated Points are added as **invalid** entry, and **lower bound** is used as distance
  - Non-terminated points are **valid** entries, with actual distance as distance
- TopK unit sorts entries by distance and discard any excess
- At the end of the reference point traverse:
  - Valid entries in TopK are accurate kNN, while invalid entries are speculated kNN (which should be close to the actual kNN, because it is based on lower bound)
- We can adjust the scaling multiplier of running mean threshold to relax termination for more accuracy (valid entries/number of entries), but this increases cycle count (tradeoff between accuracy and performance)

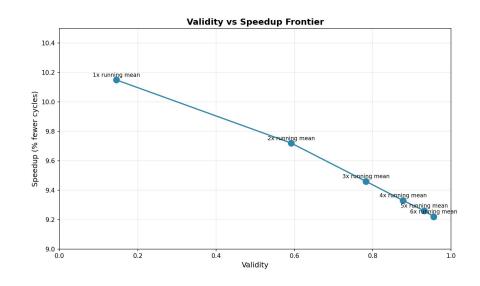


### **Evaluation**

- Created cycle-accurate Python simulation of BitNN and SpecNN
- Compared performance on test datasets
- Fine-tuned running mean heuristic for speed vs correctness

#### **Evaluation Metrics**

- Memory accesses
- Total cycles
- Average cycles per BDU
- Valid TopK entries



### **Data Sets**

- Two main constraints: 3D feature space and spatial locality
- Sequential jumps from point to point in order to simulate real time sensor readings as feature vectors

### **Initial Approach**

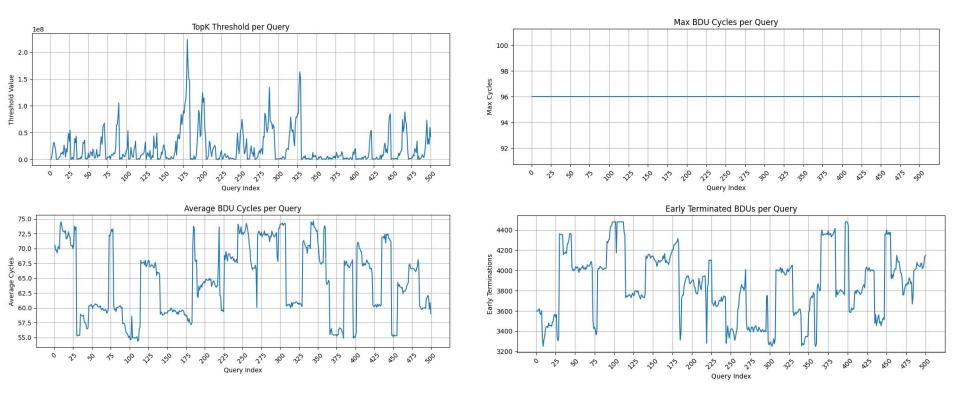
- Oxford feature embedding set
  - 4099 dimension feature set reduced to 3D feature space
  - 3D reduction did not represent full feature space

### **Synthetic Generation**

- One main drift (scale = drift\_scale)
- A secondary drift with smaller variance (scale = drift\_scale / 3) Mixed as:
  - 0.7 \* big\_drift + 0.3 \* small\_drift
- Convert to 64 bit blocks to represent memory
- Adequately captures real point cloud scenario

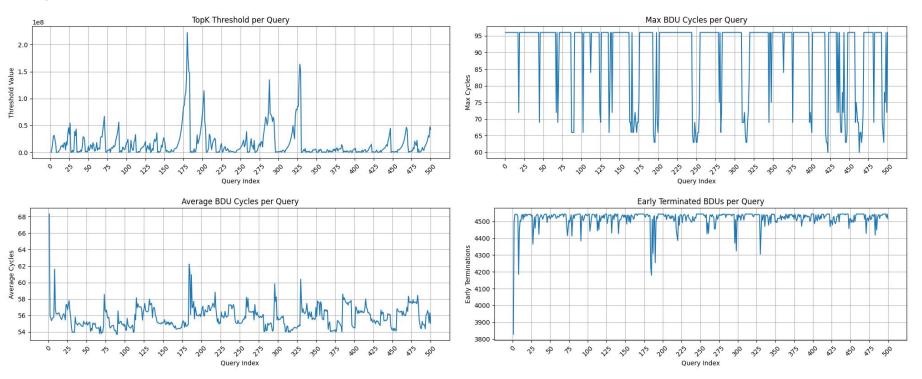


# **BitNN Baseline Simulation Results**





# **SpecNN Simulation Results**





# **Conclusion**

Goal: Leverage bit serial computation and domain specific knowledge to perform even more aggressive early termination than BitNN

### Challenges:

- Amdahl's Law
- Data Set Distribution



# **Future Work**

- Synthesis Testing
- Integration with GPU architecture
- Build out data processing pipeline for system level testing
- Testing non-lockstep BDU architecture





**Q&A** 

# References

[1] BitNN: A Bit-Serial Accelerator for K-Nearest Neighbor Search in Point Clouds, https://ieeexplore.ieee.org/document/10609723

#### [2] KITTI Datatsets,

https://www.cvlibs.net/datasets/kitti/eval\_odometry.php#:~:text=The%20evaluation%20table%20below%20ranks,split%20of%20the%20training%20set.

[3] ICP in Simultaneous Localization and Mapping, <a href="https://cw.fel.cvut.cz/b192/media/courses/aro/tutorials/icp\_slam.pdf">https://cw.fel.cvut.cz/b192/media/courses/aro/tutorials/icp\_slam.pdf</a>

[4] PointAcc, Efficient Point Cloud Accelerator,

https://dl.acm.org/doi/fullHtml/10.1145/3466752.3480084#:~:text=For%20instance%2C%20outdoor%20LiDAR%20point,never%20dilate%20during%20the%20computation.

