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1. Overview 
 
We chose to base our processor on the R10K architecture.  From the beginning, we chose to 
implement the following “Difficult Advanced Features”: 

●​ N-way Superscalar Width 
●​ Early Branch Resolution 
●​ Early Tag Broadcasting 

 
In addition to this, we also implemented these “Simpler Advanced Features”: 

●​ Tournament Branch Predictor (GShare vs. Simple) 
●​ Victim D-Cache  
●​ 16-way Associative D-Cache 
●​ Non-Blocking D-Cache 
●​ Instruction Prefetching 
●​ Store Queue for out-of-order memory accesses 
●​ Data Forwarding from stores to loads 

 
We generally followed the R10K architecture and data structures as they were presented in the 
lecture, with a few significant alterations and additions as described below: 

●​ Freddy List (Free + Ready/Complete) as opposed to Map Table ready bits  
●​ MSHR FIFOs 
●​ Combined Store Queue and Post-Retirement Buffer 
●​ Writeback Buffer 
●​ Post-Data-Stage Load Buffer 

 
Given these additional modules as well as the standard data structures required for the R10K 
architecture, such as ROB, Reservation Station, Branch Stack, Instruction Buffer, etc., we ended 
up with the following configurations regarding sizing, space, and associativity: 

 
●​ 32 ROB entries 
●​ 32 RS entries 
●​ 32 Instruction Buffer entries 
●​ 4 Branch Stack entries 
●​ 8 Combined Store Queue/Buffer 

Entries 
●​ 8 Load buffer Entries 
●​ 2 ALUs 
●​ 2 Mult Units 
●​ 1 Load Unit 

●​ 1 Store Unit 
●​ 1 Branch Unit 
●​ 5 History bits for Branch Predictor 

BHR 
●​ 8-way BTB 
●​ 16-way D-Cache 
●​ Direct Mapped, 2-Banked I-Cache 
●​ 16 MSHRS each, in FIFO ordering, 

for I-Cache and D-Cache 
●​ Prefetch Window of 32 instructions 
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Final Performance Metrics: 
All of the following metrics are based on performance analysis done for the C programs we were 
provided when compiled with the default optimization level.  We took CPI data averaged over 
each program as well as a weighted average over the total number of instructions across all 
programs. 
 
Clock period: ​​ ​ 7.85ns 
Average Weighted CPI: ​ 1.12 
Average Unweighted CPI: ​ 1.43 
Weighted Iron Law: ​ ​ 8.79 ns/inst 
Unweighted Iron Law: ​ 11.18 ns/inst 
 
System Diagram: 

 
Figure 1. High-Level Architecture Diagram 
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2. Testing Methodology 
 
We went through several phases of testing throughout the semester, each of which involved 
different approaches for debugging and analyzing correctness.  To understand our testing 
methodology, it is important to know how we organized our modules in code.  To start, we made 
the strategic decision to make our data structure modules very passive and containerized.  The 
bulk of the combinational logic was done in our “Stage” modules which primarily took in state 
information from the data structures and calculated the next outputs to send to each container. 
 
Phase 1: Pre-Milestone 2 
During the first few weeks of the project, we focused on implementing the main data structures 
in the R10K architecture.  These included the ROB, RS, Branch Stack, and Freddy List.  In order 
to test the correctness of our implementations, we employed SVAs.  We wrote a significant 
amount of rigorous assertions and property statements for each data structure, and ran these 
assertions on test benches with both edge cases and generic test coverage.  We are confident in 
the correctness of these data structures, both due to the passive and simplistic nature of their code 
as well as the strength and coverage of the assertions encoded in our SVAs. 
 
Phase 2: Post-Integration 
Once we integrated the backend of our processor and passed mult_no_lsq, we switched our 
debugging approach to using display statements.  We would print out state information from each 
cycle during execution into a log file and search for key signals to pinpoint when things went 
wrong. This worked fairly well for us, as we were able to achieve full correctness on the public 
test cases over a week before the deadline.  Not only this, but we were also able to quickly 
achieve full correctness on the C programs when using different compiler optimization settings, 
including o1, o2, o3, and os. 
 
Phase 3: Full Performance Analysis 
With our remaining time, we wanted to fine-tune the parameters and logic in our CPU to 
maximize performance and minimize our clock period by finding our critical path.  The main 
considerations we focused on with the time we had left were the following: 

●​ What to set N to? 
●​ How many multiplier stages to use? 
●​ When to reset the PC in the fetch stage on a branch mispredict? 
●​ Associativity of the D-Cache and BTB 
●​ Prefetch Distance 
●​ BHR size 
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3. ​ Advanced Feature Analysis 
 
For any features not analyzed in depth here, we lacked the ability to empirically compare our 
implementations to any reasonable alternatives since many of the decisions we made in code 
were not easily toggled on and off, and we did not have sufficient time to address this by the end 
of the project.  However, our high overall performance is indicative of the large amount of time 
and thought we put into these decisions before coding.  The many hours of discussion and debate 
that we engaged in as a group are what made us confident that we could achieve our desired 
performance with the implementations we decided on.   
 
3.1. ​ N-way Superscalar Width 
The first “major” advanced feature that we chose to implement was N-way Superscalar Width. 
This would help us increase our throughput by increasing the number of instructions we retire 
per cycle, therefore lowering our CPI. Although we updated several modules to support N-way 
logic with dependent for-loops, the most significant change was in the execute module, which is 
responsible for selecting n instructions for completion and latching them onto the CDB register.  
 
We chose our superscalar width by conducting a performance analysis with Mult Stages set to 4 
and varying N, and concluded that N = 2 ways was optimal. N = 1 would bottleneck our CPI due 
to not taking advantage of the program ILP, as clearly shown in the graph below. Oppositely, 
since the C programs did not have enough ILP to take advantage of the greater superscalar width,  
N = 3 way did not provide a sufficient CPI boost to justify the increased clock period (9.1ns) 
stemming from our superscalar-width-dependent for-loop in Dispatch. Thus, N = 2 would result 
in the best balance between CPI and clock period for the lowest Iron Law.  
 

 
Figure 2. N-Way CPI Comparison Chart 
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3.1.1. ​ Multiplier Stages 
After selecting N = 2 Ways, we wanted to optimize the number of multiplier stages, because the 
multiplier is likely the critical path. We began by conducting a similar analysis to superscalar 
width, varying Mult Stages for a 2-way superscalar width. 2, 4, and 8-stage multipliers resulted 
in very similar CPI, so it was easy to rule out 2 and 4-stage multipliers due to their critical path 
bottlenecks. The 16-stage had a higher CPI, but could potentially allow us to push our clock 
period below 7.85ns (which is the clock period set with an 8-stage multiplier on the critical path). 
We were curious how low we could push our clock period without the multiplier on the critical 
path, and whether this would result in an improved Iron Law given the increased CPI.  
 

 
Figure 3. Multi-Stage CPI Comparison Chart 

 
Therefore, after determining that we had to choose between 8 and 16 stage multiplier, we 
conducted a more involved analysis, testing each C program and optimization with both pipeline 
widths for both weighted and unweighted CPI (weighted = total cycles/total program lines across 
all C programs; unweighted = average of program CPIs). We also ran multiple syntheses to push 
our clock periods for both pipeline widths, bottoming at 7.85ns for 8-stage and 7.4ns for 16-stage 
(in which case the critical path was not actually the multiplier, but rather, our Fetch stage). After 
collecting all of this data, we compared the speedup of the 8-stage multiplier over the 16-stage 
multiplier, and concluded that the 8-stage multiplier was substantially faster for weighted Iron 
Law, and marginally slower for unweighted Iron Law, hence, we are convinced that the 8-stage 
multiplier is clearly a better choice. However, from a more critical stance, we should point out 
that outer_product.c substantially shifts the odds in favor of the 8-stage multiplier, but it is more 
than reasonable that multiplication is a real-world workload for a processor. As a result, it makes 
sense to choose a pipeline width that offers better performance for such a workload.  
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Weighted CPIs across all C programs for 8 vs 16 Stage 

Stages/Opts O0 O1 O2 O3 OS Average Clock Period (ns) 

8 Stage 1.120 1.455 1.352 1.456 1.310 1.339 7.85 

16 Stage 1.247 1.625 1.538 1.634 1.457 1.500 7.40 

 
8 Stage % Speedup over 16 Stage, Unweighted 

Programs/Opts. O0 O1 O2 O3 OS Average 

alexnet.c 8.06% 10.06% 18.54% 0.00% 10.33% 9.40% 

backtrack.c 6.03% 0.00% 0.00% 0.15% -0.28% 1.18% 

basic_malloc.c 2.97% 0.00% 0.00% 0.00% 0.00% 0.59% 

bfs.c 2.21% 0.00% 0.00% 0.00% 1.08% 0.66% 

dft.c 3.39% 3.83% 4.92% 4.66% 3.97% 4.15% 

fc_forward.c 5.01% 5.46% 6.89% 6.89% 14.22% 7.69% 

graph.c 2.77% -0.14% 0.00% 0.00% 0.44% 0.61% 

insertionsort.c 3.02% 5.13% 5.37% 5.37% 0.00% 3.78% 

matrix_mult_rec.c 3.05% 2.06% 1.54% 1.32% 2.19% 2.03% 

mergesort.c 1.91% 0.00% 0.00% 0.00% 0.00% 0.38% 

omegalul.c 2.60% 0.00% 0.00% 0.00% 0.00% 0.52% 

outer_product.c 20.14% 17.35% 17.98% 17.95% 19.63% 18.61% 

priority_queue.c 2.57% 0.00% 0.00% 0.00% 0.00% 0.51% 

quicksort.c 1.25% 4.13% 3.22% 4.64% 3.07% 3.26% 

sort_search.c 2.21% 0.00% 0.00% 0.00% -0.10% 0.42% 

CPI and Iron Law Speedup Summary 

Weighted CPI 10.18% 10.46% 12.09% 10.89% 10.09% 10.74% 

Unweighted CPI 4.35% 3.24% 3.94% 2.75% 3.74% 3.60% 

Weighted Iron Law 5.99% 6.28% 7.99% 6.74% 5.89% 6.58% 

UW Iron Law -0.12% -1.28% -0.54% -1.79% -0.75% -0.90% 

8 Stage Overall Average Iron Law Speedup over 16 Stage 

Weighted 6.61% 

Unweighted -0.92% 

Table 1. Analysis on Speedup between 8-stage and 16-stage multiplier 
 
 
3.2. ​ Early Branch Resolution 
Our EBR feature takes advantage of the idea that once a branch (unconditional or conditional) 
exits its associated functional unit, the processor knows whether or not it was mispredicted and 
can immediately rollback accordingly. It achieves this by giving each dispatched branch a unique 
one-hot bit-vector called a branch mask mask and turning this bit high in an identically sized 
branch mask register. This branch mask would then be attached to every subsequently dispatched 
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instruction. Additionally, to keep track of the state of the processor at the time of dispatch, EBR 
copies the current free list, map table, and store queue mask as well as pointers to the tail of the 
ROB and store queue in the case of a mispredict. It also collects the PC to recover via the BTB 
or the current PC itself and stores all this information in a data structure named the branch stack. 
During branch resolution, EBR turns the bit associated with the branch off in the branch mask 
register and branch masks of dependent instructions. In the case of a mispredict, EBR squashes 
all aforementioned instructions, sets fetch along the correct path, and reverts the state of the 
processor through the branch stack. 
 
Given how interconnected the feature is with other aspects of the processor, we began molding 
our design with its implementation in mind very early on in the semester. Thus, no data of the 
processor’s performance without EBR was collected, but we assume it greatly reduced CPI.  
 
3.3. ​ Early Tag Broadcasting 
Another advanced feature we implemented was Early Tag Broadcast (ETB). Without ETB, the 
tags that the CDB broadcasts to the Reservation Station arrive and are latched on the same cycle 
that the data is latched to the CDB register. This causes a cycle delay between data being 
calculated and instructions waiting on that data from being allowed to issue. With ETB, tags are 
broadcast the same cycle that data is finished being calculated, allowing dependent instructions 
to issue early and grab forwarded data right before they start execution. This helped reduce CPI 
dramatically (around a 1.33x speedup). 
 
3.4. ​ Tournament Branch Predictor (GShare, Simple, Meta) 
The Tournament Branch Predictor can predict both history-dependent and independent branches, 
which is useful across a range of programs and warm-up times. We speculatively update BHR 
with the status of the prediction in Fetch by setting Not Taken until the first Taken prediction, but 
only update the PHTs after the branch's result is known in Complete. While testing the size of the 
BHR, we found that 5 bits was sufficiently large to be useful for history-dependent branches, and 
that increasing beyond 5 bits did not net any increase in performance. Additionally, we initialized 
GShare PHTs to Weakly Taken and Simple PHTs to Weakly Not Taken, with the Meta predictor 
initialized to Weakly Simple. Analyzing each predictor in Figure 4, we found that simple PHT 
does better in basic_malloc, dft, mergesort, and quicksort, while GShare does better in alexnet 
and backtrack.  
 
The Tournament Branch Predictor takes the best out of both in most cases, or at least the average 
of both, further solidifying our BP choice. The weighted average accuracy across all C programs 
for this configuration was 87%, a significant improvement over the weighted average accuracy 
of Always Not Taken at 31%.  
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Figure 4. Branch Prediction Accuracy of Different Branch Predictors 

 
3.5. ​ Memory Arbitration 
We employed a priority scheme for memory arbitration. The priority for our main memory 
arbitration is as follows, from most prioritized to least prioritized: Load/Store Request, Fetch 
Instruction Miss, Dirty D-Cache Line, Instruction Prefetcher. 
 
3.6. ​ Non-Blocking 16-Way Set-Associative D-Cache  
The data cache (D-Cache) is implemented as a non-blocking, write-back, 16-way set-associative 
cache. It has 16 miss status holding registers (MSHR) with a fully associative 4-line victim cache 
and a 4-line write-back buffer. We used pure LRU for each set in the D-Cache as well as our 
V-Cache. Our D-Cache allows for only one access to its memDP module at a time. There are two 
possible sources that these accesses could come from: a load/store hit in the D-Cache/V-Cache, 
or an MSHR that has gotten data back from main memory. We prioritize the load/store hits over 
the MSHR, realizing that MSHRs rarely need to immediately push their data into the cache. Our 
D-Cache was never part of our critical path, so we chose the highest associativity possible.  
 
3.7. ​ Instruction Prefetching 
Each instruction executed by our processor must have once been read from main memory. Our 
instruction prefetcher attempts to amortize this latency by preparing multiple memory requests 
for future instructions, defined as the prefetch window, and making use of the mem-line when no 
other higher priority requests exist. Since there is no fear of a line in the I-Cache being dirty and 
thus, no eviction policy, an instruction fetch memory request being fulfilled can immediately be 
entered into the cache, following a different priority to D-Cache MSHRs. As a result, we gave 
the I-Cache its own MSHRs to monitor. While testing, we ran the processor with either a 
prefetch window of 16 or 32 instructions. After analysis, it was determined that a window of 32 
instructions gave us the best performance boost, reducing the CPI by more than half. 
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3.8. ​ Store Queue 
Our store queue works to ensure ordering of reads and writes to memory while also trying to 
reduce the number of cache and memory requests between load and store instructions. Ordering 
of writes is achieved by storing dispatched instructions in a store queue; the ability to write to the 
cache is only permitted to the store at the head of the queue. When entering the store queue, a 
one-hot bit vector similar to the branch mask is appointed to the store instruction, and the 
associated bit is turned on in the store queue mask register. All future loads are then labeled with 
the current store queue mask. After a store has calculated its target address, its associated bit is 
turned off everywhere it was being referenced. 
 
To achieve ordering of reads, a load instruction must first wait on all older store instructions to 
calculate their target address before being capable of being issued. This is done by simply 
waiting until its store queue mask equals zero. After being issued, loads will calculate their 
addresses and check the store queue for any data to pull. All data transferring was done on a 
byte-level granularity, which was kept track of with a byte mask. After parsing through the store 
queue, an aging algorithm was applied to every store with the same target address tag for each 
individual byte. This aging algorithm would choose the youngest of all the aforementioned 
stores, ensuring that the most recent write in relation to the load is read. If any bytes still remain 
to be filled, the load instruction then retrieves them from the D-Cache or main memory. 
 
3.9. ​ Advanced Features Parameter Tweaking 
Finally, to determine the best advanced feature parameters, such as prefetch distance, D-cache 
Associativity, and BHR bits, we ran through various combinations to test for the most optimized 
parameter combinations. Table 2 illustrates the various combinations our team has experimented 
with. Figure 5 shows the CPI analysis of different combinations. From this analysis, we were 
able to conclude that Combination 5 yields the best CPI performance; hence, our processor is 
finalized with the parameters defined in Combination 5. 
 

     Table 2. Parameters of different combinations 
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Combination 1 2 3 4 5 

Prefetch Distance 32 32 32 24 32 

D$ Associativity 8 8 16 8 16 

ROB Size 32 32 64 64 32 

RS Size 32 32 32 32 32 

BTB Ways 4 8 4 4 8 

Branch History Bits 5 5 8 10 5 

Store Queue Size 4 8 8 8 8 

Load Buffer Size 4 8 4 8 8 



 

 
Figure 5. CPI Performance Analysis with different parameter combinations 

 
 
4. ​ Project Management 
 
Once we had implemented the ROB for milestone 1, we divided into 3 pairs to work on the 
implementation and testing of the other primary data structures (RS, Branch Stack, and Freddy 
List).  However, beyond that point, almost the entirety of the project was done as a whole group 
in person.  Everyone contributed to the high-level discussions regarding how to design each 
module, and everyone contributed to translating our designs into algorithms and code. This 
approach, although somewhat unconventional, worked very well since we always had many 
perspectives to consider for each aspect of the processor, and it made debugging much easier.  In 
addition, this made the overall experience of the course much more enjoyable since everyone 
was able to learn how each component worked, and we meshed well as a team. 
 
Our goals were originally centered around the advanced features we wanted to implement, and 
we all had the understanding that we wanted to aim for a design that was as efficient as possible 
in terms of performance.  Each member made it clear in the beginning that they were willing to 
put in the necessary work to achieve a top-performing processor, and because of our shared 
ambition, we collaborated well together and met each of the deadlines we set out to meet. 
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